Inspiriert vom menschlichen Auge
Die „Zapfen“ und „Stäbchen“ in der Netzhaut des menschlichen Auges, die für das Farbensehen beziehungsweise eine empfindliche Helligkeitsunterscheidung zuständig sind, senden nach Lichteinfall sofort elektrische Nervenimpulse aus. Diese werden dann in der Netzhaut teilweise zusammengeschaltet, vorverarbeitet und das entstehende Signal schließlich ans Gehirn weitergeleitet. „Ähnlich funktionieren auch Eventkameras. Jedes einzelne, lichtempfindliche Pixel trägt zeitlich unabhängig zum Gesamtbild bei. Es gibt keine Belichtungszeit, nach der alle Pixel auf einmal ausgelesen werden, wie bei normalen Kameras“, erklärt Gallego. „Im Unterschied zum Auge lösen die Pixel aber nicht bei jedem Lichteinfall ein Signal aus, sondern nur, wenn sich die Helligkeit ändert. Das hat den Vorteil, dass die zu verarbeitenden Datenmengen vom Prinzip her wesentlich kleiner sind.“
Keine Belichtungszeit bedeutet deutlich höheren Dynamikumfang der Eventkamera
Einen der großen Vorteile der Eventkameras zeigt Gallego beim Vergleich mit einer normalen Videokamera, die auf seinen Schreibtisch vor dem Bürofenster gerichtet ist. Auf dem normalen Videobild ist nur der Schreibtisch selbst richtig belichtet, das Fenster dagegen hell überstrahlt und der Raum unter dem Schreibtisch völlig dunkel. Ganz anders die Eventkamera: Sie gewährt nicht nur einen Blick auf das Kabelgewirr unter der Tischplatte, sondern zeigt auch den realen Blick aus dem Fenster mit den Gebäuden gegenüber. Der Trick dahinter: Die Videokamera nimmt beispielsweise 30-mal in der Sekunde ein Bild mit der Belichtungszeit von einer sechzigstel Sekunde auf. Die Belichtungszeit wird dabei automatisch so eingestellt, dass sie den größten Teil des Bildes richtig wiedergeben kann – bei den extremen Abweichungen in der Helligkeit am Fenster und unter dem Tisch ist dies allerdings nicht mehr möglich. „Die Eventkamera muss sich aber gar nicht für eine Belichtungszeit entscheiden, die sozusagen alle Bildelemente über einen Kamm schert. Jedes Pixel meldet dagegen nach Einschalten der Kamera jeweils, ob und wie stark sich die einfallende Lichtmenge geändert hat“, so Gallego.
Die Spanne der Helligkeit, die eine Kamera noch darstellen kann, wird „Dynamikumfang“ genannt und meist in der logarithmischen Einheit Dezibel (dB) angegeben. Während eine professionelle Digitalkamera einen Dynamikumfang von etwa 45 dB aufweist, decken Eventkameras einen Bereich von 120 dB ab. Aufgrund der logarithmischen Skala entspricht dies einer Verbesserung um das 6.000-Fache.
Zeitlupenaufnahmen mit ungeahnt hoher Auflösung
Aufgrund des Wegfalls der Belichtungszeit und der schnellen Reaktionszeit der Pixel im Bereich von Mikrosekunden sind mit Eventkameras auch Hochgeschwindigkeitsaufnahmen möglich, die für Zeitlupenfilme mit extremer Auflösung genutzt werden können. Das typische Maß für Hochgeschwindigkeitsaufnahmen ist die Bildwiederholrate in Bildern pro Sekunde; eine typische Highspeed-Kamera nimmt etwa 10.000 Bilder pro Sekunde auf. Da Eventkameras eben keine ganzen Bilder belichten, muss man für einen Vergleich ihre Performance in eine „virtuelle“ Bildwiederholrate umrechnen. Diese läge bei etwa 200.000 Bildern pro Sekunde – was das Potential der Technik eindrucksvoll illustriert.
Hardware und Software stecken noch in den Kinderschuhen
„Eventkameras wurden ursprünglich von Neurowissenschaftler*innen entwickelt, um ein Modell des menschlichen Sehens zu etablieren“, sagt Friedhelm Hamann, Doktorand am Exzellenzcluster Science of Intelligence. Erst später seien Forschende auf die Idee gekommen, mit ihnen auch fotografische Innovationen voranzutreiben. „Daher hat die herkömmliche Digitalfotografie sowohl auf der Seite der Hardware wie auch bei den Algorithmen zur Bildanalyse mehrere Jahrzehnte Vorsprung.“ Hamann interessiert sich in seiner Doktorarbeit vor allem für letztere. Intelligente Algorithmen sind besonders dann wichtig, wenn aus den Kameradaten Informationen gewonnen werden müssen, etwa für die Orientierung von Robotern im Raum oder autonome Fahrzeuge.