Mechanik, Fachgebiet Systemdynamik und Reibungsphysik

Dr.-Ing. Qiang Li

Sekretariat C8-4
Gebäude M
Raum 127
Adresse Str. des 17. Juni 135
10623 Berlin

Wissenschaftlicher Werdegang

2014Promotion zum Thema "Simulation von Reibung und Verschleiß mit der Methode der Dimensionsreduktion" an der TU Berlin
seit 2010Wissenschaftlicher Mitarbeiter am FG Systemdynamik und Reibungsphysik der TU Berlin
2007-2010M.Sc in Mechanical Engineering, East China University of Science and Technology, China
2003-2007B.Sc in Mechanical Engineering, East China University of Science and Technology, China
  

Forschungsinteressen

Adhäsion
Verschleiß
Kontaktmechanik
Elastomer Kontakt
Einfluss von Schwingungen auf die Reibung
Nummerische Methoden in Kontaktmechanik

Betreute Lehrveranstaltungen

Materialtheorie
Projekt Simulation von tribologischen Kontakten

Publikationen

Adhäsion

Li Q, Pohrt R, Popov VL, Adhesive Strength of Contacts of Rough Spheres, Front. Mech. Eng, 2019, 5:7. https://www.frontiersin.org/article/10.3389/fmech.2019.00007

Li Q, Popov, VL, Adhesive contact between a rigid body of arbitrary shape and a thin elastic coating, Acta Mechanica, 2019, 230 (7):, 2447-2453. https://link.springer.com/article/10.1007/s00707-019-02403-0

Argatov II, Li Q, Popov VL, Cluster of the Kendall-type adhesive microcontacts as a simple model for load sharing in bioinspired fibrillar adhesives, Arch. Appl. Mech., 2019, 89 (8):1447-1472. https://link.springer.com/article/10.1007/s00419-019-01516-1

Li Q, Popov VL, Adhesive contact of rough brushes, ‎Beilstein J. Nanotechnol, 2018, 9: 2405–2412. https://www.beilstein-journals.org/bjnano/articles/9/225

Li Q, Popov VL, Adhesive force of flat indenters with brush-structure, FU Mech Eng, 2018, 16(1): 1-8. https://doi.org/10.22190/FUME171220005L 

Li Q, Argatov II, Popov VL, Onset of detachment in adhesive contact of an elastic half-space and flat-ended punches with non-circular shape: analytic estimates and comparison with numeric analysis, J. Phys. D, 2018, 51(14):145601. http://iopscience.iop.org/article/10.1088/1361-6463/aab28b/meta

Popov VL, Pohrt R, Li Q, Strength of adhesive contacts: Influence of contact geometry and material gradients, Friction, 2017, 5(3): 308-325. https://doi.org/10.1007/s40544-017-0177-3

Li Q, Popov VL, On the possibility of frictional damping with reduced wear: A note on the applicability of Archard's law of adhesive wear under conditions of fretting, Phys Mesomech, 2017, 20(5):91-95. doi.org/10.1134/S1029959918010137

Argatov I, Li Q, Pohrt R, Popov VL, 2016, Johnson–Kendall–Roberts adhesive contact for a toroidal indenter, ‎Proc. Royal Soc. A, 472(2191). https://doi.org/10.1098/rspa.2016.0218

Verschleiß

Li Q, Voll L, Starcevic J, Popov VL. Heterogeneity of material structure determines the stationary surface topography and friction, Sci R, 2018, 8, 14168. https://doi.org/10.1038/s41598-018-32545-5

Li Q, Forsbach F, Schuster M, Pielsticker D, Popov VL, Wear Analysis of a Heterogeneous Annular Cylinder, Lubricants, 2018, 6(1): 28. https://doi.org/10.3390/lubricants6010028

Li Q. Limiting profile of axisymmetric indenter due to the initially displaced dual-motion fretting wear, FU Mech Eng, 2016, 14(1): 55-61.

Li Q, Filipopov AE, Dimaki AV, Chai YS, Popov VL. Simplified simulation of fretting wear using the method of dimensionality reduction. 2014. Phys Mesomech, 17(3): 236-241

Kontaktmechanik

Li Q, Popov VL. Normal line contact of finite-length cylinders, FU Mech Eng, 2017, 15(1): 63-71. https://doi.org/10.22190/FUME170222003L

Li Q. On the tensor of tangential stiffness in contact problems, Phys Mesomech, 2017, 20(5): 51-56. https://doi.org/10.1134/S1029959918010071 

Li Q, Popov, VL. Indentation of flat-ended and tapered indenters with polygonal geometries, FU Mech Eng, 2016, 14(3):241-249

Willert E, Li Q, Popov VL. The JKR-adhesive normal contact problem of axisymmetric rigid punches with a flat annular shape or concave profiles, FU Mech Eng2016: 14 (3), 281-292.

Zhang J, Butz A, Li Q. Simulation of frictional energy dissipation in a fiber contact subjected to normal and tangential oscillation. Phys Mesomech. 2015; 18(4), 52-56.

Elastomer Kontakt

Popov VL, Voll L, Kusche S, Li Q, Rozhkova SV, Generalized master curve procedure for elastomer friction taking into account dependencies on velocity, temperature and normal force, Tribol Int, 2018, 20:376-380. 

Li Q, Dimaki AV, Popov M., Psakhie SG, Popov VL. Kinetics of the coefficient of friction of elastomers. Sci R. 2014; 4, 5795

Popov VL, Voll L, Li Q, Chai YS, Popov M. Generalized Law of Friction between elastomers and differently shaped rough bodies. Sci R, 2014, 3, 3750. https://doi.org/10.1038/srep03750

Li Q, Popov M, Dimaki A, Filipopov AE, Kürschner S, Popov VL. Friction between a viscoelastic body and a rigid surface with random self-affine roughness. Phys Rev Lett, 2013, 111(3):034301. https://doi.org/10.1103/PhysRevLett.111.034301

Li Q, Popov M, Dimaki A, et al. Li et al. Reply. Phys Rev Lett, 2013, 111(18): 189402

Einfluss von Schwingungen auf die Reibung

Zughaibi JM, Schulze FH, Li Q. Critical velocity of controllability of sliding friction by normal oscillations for an arbitrary linear rheology, Phys Mesomech, 2018, 21(4): 371-378. https://doi.org/10.1134/S1029959918040112

Popov M, Li Q. Multi-mode active control of friction, dynamic ratchets and actuators, Phys Mesomech2017, 20(5): 26-32. https://doi.org/10.1134/S1029959918010046

Milahin N, Li Q, Starcevic J. Influence of the normal force on sliding friction under ultrasonic oscillations. FU Mech Eng. 2015, 13(11): 27-32.

Milahin N, Li Q. Friction and wear of s spherical indenter under influence of out-of-plane ultrasonic oscillations. Phys Mesomech. 2015, 18(4): 38-41.

Popov M, Li Q, Popov N. Damping in viscoelastic contacts under combined normal and tangential oscillation . AIP Conference Proceedings, 1683, 020187 (2015). dx.doi.org/10.1063/1.4932877

Nummerische Methoden in Kontaktmechanik

Li Q, R. Pohrt R, Lyashenko IA, Popov VL, Boundary element method for nonadhesive and adhesive contacts of a coated elastic half-space, Proc. Inst. Mech. Eng. J, 2019, https://doi.org/10.1177/1350650119854250

Li Q, Popov VL. Boundary element method for normal non-adhesive and adhesive contacts of power-law graded elastic materials, Comput Mech, 2018, 16(3):319-329. https://doi.org/10.1007/s00466-017-1461-9

Pohrt R, Li Q. Complete Boundary Element Formulation for Normal and Tangential Contact Problems. Phy Mesomech 17, 334–340 (2014).