AG Quantennichtgleichgewichtsdynamik
AG Quantennichtgleichgewichtsdynamik

Forschungsgruppe FOR 2414

Wir sind Teil der DFG Forschungsgruppe FOR 2414 - Subproject T1 "Ultracold Atoms in Dynamically Created Gauge Fields"

Floquet engineering, the coherent control of a quantum system by means of time-periodic driving, has recently been employed very successfully for the dynamic realization of artificial gauge fields (magnetic fields or spin-orbit coupling) and topological band  structures for charge-neutral atoms in optical lattices. In this project we will study possibilities to extend these schemes to interacting systems. The aim is to develop theoretical understanding and new concepts enabling the preparation, manipulation, and characterization of topological states of matter in optical lattices. This includes different directions of research:

The impact of weak interactions on topological band structures shall be studied in systems of spinful fermions; here we will also work on schemes for adiabatic state preparation and the dynamical (quench-based) detection of system properties. We will develop protocols for the coherent control of small systems that take advantage of the new possibility to create tailor-made potential landscapes with high spatial resolution in recently developed quantum-gas microscopes. In this context we will look also for possible ways and optimal conditions for stabilizing, preparing, and probing topologically ordered droplet states (like fractional Chern insulators) in strongly interacting bosonic systems. Also the intrinsic heating of many-body Floquet systems will be investigated as well as strategies to minimize/suppress it in realistic experiments. Finally, we will pursue an open-system approach for describing mixtures of different (bosonic or fermionic) atomic species, addressing i.a. the question under which conditions the environment given by a second species can be beneficial for the preparation and stabilization of target states in driven systems.


Mehr Informationen hierzu finden Sie auch auf der Website der Forschunsgruppe

Sonderforschungsbereich SFB 910

Wir sind Teil des Sonderforschungsbereich SFB 910 - Subprojekt A12: "Feedback control of atomic quantum gases"

We plan to theoretically study the use of open-loop quantum feedback control for engineering dissipativeenvironments with tailored properties for systems of ultracold atoms in optical lattices. For this purpose, continuous measurements of the system via the off resonant scattering of photons from a tailored probe beam into a cavity mode shall be considered and a focus will lie on the combination of feedback control with Floquet engineering. Based on this approach, we will design and test strategies for cooling, dissipative state preparation, mimicking thermal environments, suppressing Floquet heating, studying heat transport and inducing non-trivial relaxation dynamics.

Mehr Informationen hierzu finden Sie auch auf der Website des SFB