Quality and Usability

Neural Sequential Transfer Learning for Relation Extraction (Christoph Alt)

Relation extraction (RE) is concerned with developing methods and models that automatically detect and retrieve relational information from unstructured data. It is crucial to information extraction (IE) applications that aim to leverage the vast amount of knowledge contained in unstructured natural language text, for example, in web pages, online news, and social media; and simultaneously require the powerful and clean semantics of structured databases instead of searching, querying, and analyzing unstructured text directly. In practical applications, however, relation extraction is often characterized by limited availability of labeled data, due to the cost of annotation or scarcity of domain-specific resources. In such scenarios it is difficult to create models that perform well on the task. It therefore is desired to develop methods that learn more efficiently from limited labeled data and also exhibit better overall relation extraction performance, especially in domains with complex relational structure.


Download here