WiMis mit Daueraufgaben

Priv.-Doz. Dr.

Patrick Winkert

winkert@math.tu-berlin.de

+49 30 314-27487

Einrichtung Institut für Mathematik
Sekretariat MA 1-0
Raum MA 418
Adresse Straße des 17. Juni 136
10623 Berlin

Lebenslauf

Akademische Abschlüsse

2015Habilitation in Mathematik, TU Berlin
2009Promotion in Mathematik, MLU Halle-Wittenberg
2006Diplom in Mathematik, MLU Halle-Wittenberg

Wissenschaftliche Laufbahn

seit 2019Wissenschaftlicher Mitarbeiter mit Daueraufgaben, TU Berlin
seit 2016Privatdozent an der TU Berlin
WS 2017/2018Vertretungsprofessur (Analysis), MLU Halle-Wittenberg
SS 2017Gastprofessur (Angewandte Analysis), HU Berlin
WS 2016/2017Vertretungsprofessur (Analysis), MLU Halle-Wittenberg
SS 2016Vertretungsprofessur (Angewandte Analysis), MLU Halle-Wittenberg
2009 – 2019Wissenschaftlicher Mitarbeiter, TU Berlin
2006 – 2009Wissenschaftlicher Mitarbeiter, MLU Halle-Wittenberg

Lehre

Vorlesungen

WS 23/24Analysis II für Ingenieurwissenschaften
SS 23Analysis I und Lineare Algebra für Ingenieurwissenschaften
 Analysis II für Ingenieurwissenschaften
WS 22/23Analysis III für Mathematikerinnen und Mathematiker
 Analysis I und Lineare Algebra für Ingenieurwissenschaften
SS 22Analysis II für Mathematikerinnen und Mathematiker
WS 21/22Analysis I für Mathematikerinnen und Mathematiker
 Analysis I und Lineare Algebra für Ingenieurwissenschaften
SS 21Analysis I und Lineare Algebra für Ingenieurwissenschaften
 Analysis II für Ingenieurwissenschaften
WS 20/21Analysis I und Lineare Algebra für Ingenieurwissenschaften
SS 20Lineare Algebra für Ingenieurwissenschaften
 Analysis I und Lineare Algebra für Ingenieurwissenschaften
WS 19/20Analysis I und Lineare Algebra für Ingenieurwissenschaften
 Analysis I für Ingenieurwissenschaften
SS 19Analysis I für Ingenieurwissenschaften
WS 18/19Analysis I für Ingenieurwissenschaften
SS 18Lineare Algebra für Ingenieurwissenschaften
WS 17/18Funktionalanalysis (MLU Halle)
 Partielle Differentialgleichungen (MLU Halle)
 Lineare Algebra für Ingenieurwissenschaften
SS 17Lineare Algebra und Analytische Geometrie II
 (für Lehramtsstudierende, HU Berlin)
WS 16/17Funktionalanalysis (MLU Halle)
 Dynamische Systeme (MLU Halle)
 Lineare Algebra für Ingenieurwissenschaften
SS 16Maßtheorie (MLU Halle)
 Partielle Differentialgleichungen (MLU Halle)
WS 15/16Lineare Algebra für Ingenieurwissenschaften
WS 11/12Funktionalanalysis II
SS 11Funktionalanalysis I

Seminare

SS 21Differentialgleichungen (gemeinsam mit E. Emmrich)
SS 20Differentialgleichungen (gemeinsam mit H.-C. Kreusler)
SS 19Differentialgleichungen (gemeinsam mit H.-C. Kreusler und R. Kruse)
WS 16/17Fachseminar Analysis (MLU Halle, gemeinsam mit S. Carl)

Assistenzen/Übungen/Tutorien

SS 19Lineare Algebra für Ingenieurwissenschaften
WS 18/19Lineare Algebra für Ingenieurwissenschaften
SS 18Lineare Algebra für Ingenieurwissenschaften
SS 17Lineare Algebra und Analytische Geometrie II
 (für Lehramtsstudierende, HU Berlin)
WS 16/17Dynamische Systeme (MLU Halle)
WS 15/16Lineare Algebra für Ingenieurwissenschaften
SS 15Lineare Algebra für Ingenieurwissenschaften
WS 14/15Analysis I für Ingenieurwissenschaften
SS 14Lineare Algebra für Ingenieurwissenschaften
WS 13/14Lineare Algebra für Ingenieurwissenschaften
SS 13Lineare Algebra für Ingenieurwissenschaften
WS 08/09Analysis I (MLU Halle)

Betreute Abschlussarbeiten

Laufende Promotionsprojekte

1.Ángel Crespo Blanco, Isotropic and anisotropic double phase problems, TU Berlin, BMS Phase II Scholarship.

Masterarbeiten

4.Existence results for double phase problems via the Nehari manifold, TU Berlin, Juli 2021.
3.Constant-sign and sign-changing solutions for nonlinear elliptic equations, TU Berlin, Dezember 2020.
2.Existenz von Lösungen für quasilineare elliptische Gleichungen mit gradientenabhängigen rechten Seiten, TU Berlin, Juni 2019.
1.Lösbarkeit von Variations-Hemivariationsungleichungen mit Hilfe von Ober- und Unterlösung, TU Berlin, April 2016.

Bachelorarbeiten

15.Existenz und Eindeutigkeit für quasilineare elliptische Systeme mit gekoppelten gradientenabhängigen rechten Seiten, TU Berlin, April 2023.
14.Existenz von Lösungen bei Double-Phase-Problemen mittels kritischer Punkttheorie, TU Berlin, September 2021.
13.Die Theorie des Bochner-Integrals, TU Berlin, August 2021.
12.Die Methode von schwacher Ober- und Unterlösung für semilineare, elliptische Randwertprobleme, TU Berlin, Januar 2021.
11.Die Nehari-Mannigfaltigkeit zur Lösung einer elliptischen Differentialgleichung, TU Berlin, Juli 2020.
10.Der p-Laplace-Operator – Eigenschaften und Lösbarkeit zugehöriger Gleichungen, TU Berlin, Januar 2020.
9.Lebesgue- und Sobolev-Räume mit variablen Exponenten, TU Berlin, September 2019.
8.Origami: Definition in einem analytischen Kontext und Lösen spezieller Dirichlet-Probleme, MLU Halle, Juni 2018.
7.Nonlinear eigenvalue problems for nonhomogeneous differential operators, MLU Halle, Oktober 2017.
6.Die Gelfandsche Darstellungstheorie, MLU Halle, Mai 2017.
5.Das Fučík-Spektrum des p-Laplace-Operators mit Steklov-Randbedingung, TU Berlin, Mai 2016.
4.De Giorgi-Iteration für quasilineare, elliptische Gleichungen mit Neumann-Randbedingung, TU Berlin, Dezember 2015.
3.The eigenvalue problem of the p-Laplacian with Robin boundary condition, TU Berlin, Februar 2013.
2.Die Methode von Ober- und Unterlösung für nichtlineare, elliptische Gleichungen, TU Berlin, Februar 2013.
1.A priori bounds for elliptic problems with nonlinear boundary condition, TU Berlin, Juni 2012.

Forschungsinteressen

  • Nichtlineare elliptische/parabolische Differentialgleichungen und Differentialinklusionen
  • Vergleichsprinzipien und Mehrfachlösungen bei nichtlinearen Problemen
  • Nichtglatte Variationsprobleme (Variations- and Hemivariationsungleichungen)
  • Fučík-Spektrum von elliptischen Operatoren
  • Inhomogene Operatoren
  • A-Priori-Abschätzungen für elliptische/parabolische Gleichungen und Ungleichungen
  • Singuläre Probleme, Morse-Theorie und kritische Gruppen
  • Double-Phase-Operatoren
  • Differentialgleichungen mit gradientenabhängigen rechten Seiten

Herausgebertätigkeiten

Veröffentlichungen

Monografien

1.N.S. Papageorgiou, P. Winkert, Applied Nonlinear Functional Analysis. An Introduction, De Gruyter, Berlin, 2018, x+612 pp.

Artikel in Zeitschriften

95.S. Zeng, V.D. Rădulescu, P. Winkert, Nonlocal double phase implicit obstacle problems with multivalued boundary conditions, SIAM J. Math. Anal., accepted 2023.
94.N.S. Papageorgiou, F. Vetro, P. Winkert, Sign changing solutions for critical double phase problems with variable exponent, Z. Anal. Anwend. 42 (2023), no. 1-2, 235–251.
93.K. Ho, P. Winkert, New embedding results for double phase problems with variable exponents and a priori bounds for corresponding generalized double phase problems, Calc. Var. Partial Differential Equations 62 (2023), no. 8, Paper No. 227, 38 pp.
92.Á. Crespo-Blanco, P. Winkert, Nehari manifold approach for superlinear double phase problems with variable exponents, Ann. Mat. Pura Appl. (4), accepted 2023.
91.K. Ho, P. Winkert, Infinitely many solutions to Kirchhoff double phase problems with variable exponents, Appl. Math. Lett. 145 (2023), Paper No. 108783, 8 pp.
90.H. Tao, L. Li, P. Winkert, Existence and concentration of solutions for a 1-biharmonic Choquard equation with steep potential well in RN, J. Geom. Anal. 33 (2023), no. 9, Paper No. 276, 27 pp.
89.F. Vetro, P. Winkert, Nodal solutions for critical Robin double phase problems with variable exponent, Discrete Contin. Dyn. Syst. Ser. S 16 (2023), no. 11, 3333–3349.
88.R. Arora, A. Fiscella, T. Mukherjee, P. Winkert, Existence of ground state solutions for a Choquard double phase problem, Nonlinear Anal. Real World Appl. 73 (2023), 103914, 22 pp.
87.Y. Yang, W. Liu, P. Winkert, X. Yan, Existence of solutions for resonant double phase problems with mixed boundary value conditions, Partial Differ. Equ. Appl. 4 (2023), no. 3, Paper No. 18, 17 pp.
86.S. Carl, V.K. Le, P. Winkert, Multi-valued variational inequalities for variable exponent double phase problems: comparison and extremality results, Adv. Differential Equations, accepted 2023.
85.S. Zeng, Y. Bai, V.D. Rădulescu, P. Winkert, An inverse problem for a double phase implicit obstacle problem with multivalued terms, ESAIM Control Optim. Calc. Var. 29 (2023), Paper No. 30, 23 pp.
84.U. Guarnotta, R. Livrea, P. Winkert, The sub-supersolution method for variable exponent double phase systems with nonlinear boundary conditions, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., accepted 2023.
83.R. Arora, A. Fiscella, T. Mukherjee, P. Winkert, On double phase Kirchhoff problems with singular nonlinearity, Adv. Nonlinear Anal. 12 (2023), no. 1, Paper No. 20220312, 24 pp.
82.Y. Liu, V.T. Nguyen, P. Winkert, S. Zeng, Coupled double phase obstacle systems involving nonlocal functions and multivalued convection terms, Monatsh. Math. 202 (2023), no. 2, 363–376.
81.A. Sciammetta, E. Tornatore, P. Winkert, Bounded weak solutions to superlinear Dirichlet double phase problems, Anal. Math. Phys. 13 (2023), no. 2, Paper No. 23, 18 pp.
80.S. Zeng, N.S. Papageorgiou, P. Winkert, Inverse problems for double-phase obstacle problems with variable exponents, J. Optim. Theory Appl. 196 (2023), no. 2, 666–699.
79.S. Zeng, L. Gasiński, V.D. Rădulescu, P. Winkert, Anisotropic and isotropic implicit obstacle problems with nonlocal terms and multivalued boundary conditions, Commun. Nonlinear Sci. Numer. Simul. 118 (2023), Paper No. 106997, 34 pp.
78.Á. Crespo-Blanco, N.S. Papageorgiou, P. Winkert, (p,q)-Equations with negative concave terms, J. Geom. Anal. 33 (2023), no. 1, Paper No. 5, 26 pp.
77.F. Vetro, P. Winkert, Constant sign solutions for double phase problems with variable exponents, Appl. Math. Lett. 135 (2023), Paper No. 108404, 7 pp.
76.G. D'Aguì, A. Sciammetta, P. Winkert, On the Fučík spectrum of the p-Laplacian with no-flux boundary condition, Nonlinear Anal. Real World Appl. 69 (2023) 103736, 17 pp.
75.G. D'Aguì, A. Sciammetta, E. Tornatore, P. Winkert, Parametric Robin double phase problems with critical growth on the boundary, Discrete Contin. Dyn. Syst. Ser. S 16 (2023), no. 6, 1286–1299.
74.S. Zeng, V.D. Rădulescu, P. Winkert, Double phase obstacle problems with multivalued convection and mixed boundary value conditions, Dyn. Syst. Ser. B 28 (2023), no. 2, 999–1023.
73.S. Zeng, Y. Bai, P. Winkert, J.-C. Yao, Identification of discontinuous parameters in double phase obstacle problems, Adv. Nonlinear Anal. 12 (2023), no. 1, 1–22.
72.C. Farkas, A. Fiscella, P. Winkert, On a class of critical double phase problems, J. Math. Anal. Appl. 515 (2022), no. 2, 126420, 16 pp.
71.F. Vetro, P. Winkert, Existence, uniqueness and asymptotic behavior of parametric anisotropic (p,q)-equations with convection, Appl. Math. Optim. 86 (2022), no. 2, Paper No. 18, 18 pp.
70.R. Arora, A. Fiscella, T. Mukherjee, P. Winkert, On critical double phase Kirchhoff problems with singular nonlinearity, Rend. Circ. Mat. Palermo (2) 71 (2022), no. 3, 1079–1106.
69.S. Zeng, V.D. Rădulescu, P. Winkert, Double phase obstacle problems with variable exponent, Adv. Differential Equations 27 (2022), no. 9-10, 611–645.
68.W. Liu, G. Dai, N.S. Papageorgiou, P. Winkert, Existence of solutions for singular double phase problems via the Nehari manifold method, Anal. Math. Phys. 12 (2022), no. 3, Paper No. 75, 25 pp.
67.Á. Crespo-Blanco, L. Gasiński, P. Harjulehto, P. Winkert, A new class of double phase variable exponent problems: Existence and uniqueness, J. Differential Equations 323 (2022), 182–228.
66.K. Ho, Y.-H. Kim, P. Winkert, C. Zhang, The boundedness and Hölder continuity of solutions to elliptic equations involving variable exponents and critical growth, J. Differential Equations 313 (2022), 503–532.
65.S. Zeng, V.D. Rădulescu, P. Winkert, Double phase implicit obstacle problems with convection and multivalued mixed boundary value conditions, SIAM J. Math. Anal. 54 (2022), no. 2, 1898–1926.
64.W. Liu, P. Winkert, Combined effects of singular and superlinear nonlinearities in singular double phase problems in RN, J. Math. Anal. Appl. 507 (2022), no. 2, 125762, 19 pp.
63.Á. Crespo-Blanco, N.S. Papageorgiou, P. Winkert, Parametric superlinear double phase problems with singular term and critical growth on the boundary, Math. Methods Appl. Sci. 45 (2022), no. 4, 2276–2298.
62.N.S. Papageorgiou, P. Winkert, A multiplicity theorem for anisotropic Robin equations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 33 (2022), no. 1, 1–22.
61.S. El Manouni, G. Marino, P. Winkert, Existence results for double phase problems depending on Robin and Steklov eigenvalues for the p-Laplacian, Adv. Nonlinear Anal. 11 (2022), no. 1, 304–320.
60.N.S. Papageorgiou, P. Winkert, On a class of singular anisotropic (p,q)-equations, Rev. Mat. Complut. 35 (2022), no. 2, 545–571.
59.C. Farkas, A. Fiscella, P. Winkert, Singular Finsler double phase problems with nonlinear boundary condition, Adv. Nonlinear Stud. 21 (2021), no. 4, 809–825.
58.N.S. Papageorgiou, P. Winkert, Existence and nonexistence of positive solutions for singular (p,q)-equations with superdiffusive perturbation, Results Math. 76 (2021), no. 4, Paper No. 169, 20 pp.
57.N.S. Papageorgiou, P. Winkert, Positive solutions for singular anisotropic (p,q)-equations, J. Geom. Anal. 31 (2021), no. 12, 11849–11877.
56.C. Farkas, P. Winkert, An existence result for singular Finsler double phase problems, J. Differential Equations 286 (2021), 455–473.
55.L. Gasiński, P. Winkert, Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold, J. Differential Equations 274 (2021), 1037-1066.
54.N.S. Papageorgiou, P. Winkert, Singular Dirichlet (p,q)-equations, Mediterr. J. Math. 18 (2021), no. 4, Paper No. 141, 20 pp.
53.S. Zeng, Y. Bai, L. Gasiński, P. Winkert, Convergence analysis for double phase obstacle problems with multivalued convection term, Adv. Nonlinear Anal. 10 (2021), no. 1, 659–672.
52.A. Bahrouni, V.D. Rădulescu, P. Winkert, Small perturbations of Robin problems driven by the p-Laplacian plus a positive potential, Topol. Methods Nonlinear Anal. 57 (2021), no. 2, 663–673.
51.N.S. Papageorgiou, P. Winkert, (p,q)-Equations with singular and concave convex nonlinearities, Appl. Math. Optim. 84 (2021), no. 3, 2601–2628.
50.S. Zeng, L. Gasiński, P. Winkert, Y. Bai, Existence of solutions for double phase obstacle problems with multivalued convection term, J. Math. Anal. Appl. 501 (2021), no. 1, 123997, 12 pp.
49.N.S. Papageorgiou, P. Winkert, Positive solutions for weighted singular p-Laplace equations via Nehari manifolds, Appl. Anal. 100 (2021), no. 11, 2436–2448.
48.A. Bahrouni, V.D. Rădulescu, P. Winkert, Double phase problems with variable growth and convection for the Baouendi-Grushin operator, Z. Angew. Math. Phys. 71 (2020), no. 6, 183.
47.A. Bahrouni, V.D. Rădulescu, P. Winkert, Robin fractional problems with symmetric variable growth, J. Math. Phys. 61 (2020), no. 10, 101503.
46.S. Zeng, Y. Bai, L. Gasiński, P. Winkert, Existence results for double phase implicit obstacle problems involving multivalued operators, Calc. Var. Partial Differential Equations 59 (2020), no. 5, Paper No. 176, 18 pp.
45.G. Marino, P. Winkert, Existence and uniqueness of elliptic systems with double phase operators and convection terms, J. Math. Anal. Appl. 492 (2020), no. 1, 124423, 13 pp.
44.A. Bahrouni, V.D. Rădulescu, P. Winkert, A critical point theorem for perturbed functionals and low perturbations of differential and nonlocal systems, Adv. Nonlinear Stud. 20 (2020), no. 3, 663-674.
43.G. Marino, P. Winkert, L∞-bounds for general singular elliptic equations with convection term, Appl. Math. Lett. 107 (2020), 106410, 6 pp.
42.L. Gasiński, P. Winkert, Constant sign solutions for double phase problems with superlinear nonlinearity, Nonlinear Anal. 195 (2020), 111739, 9 pp.
41.Y. Bai, L. Gasiński, P. Winkert, S. Zeng, W1,p versus C1: The nonsmooth case involving critical growth, Bull. Math. Sci. 10 (2020), no. 3, 2050009, 15 pp.
40.L. Gasiński, P. Winkert, Existence and uniqueness results for double phase problems with convection term, J. Differential Equations 268 (2020), no. 8, 4183-4193.
39.G. Marino, P. Winkert, Global a priori bounds for weak solutions of quasilinear elliptic systems with nonlinear boundary condition, J. Math. Anal. Appl. 482 (2020), no. 2, 123555, 19 pp.
38.S.A. Marano, P. Winkert, Corrigendum to „On a quasilinear elliptic problem with convection term and nonlinear boundary condition“ [Nonlinear Anal. 187 (2019) 159–169], Nonlinear Anal. 189 (2019), 111578.
37.G. D’Aguì, B. Di Bella, P. Winkert, Two positive solutions for nonlinear fourth-order elastic beam equations, Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 37, 12 pp.
36.G. Bonanno, G. D’Aguì, P. Winkert, A two critical points theorem for non-differentiable functions and applications to highly discontinuous PDE’s, Pure Appl. Funct. Anal. 4 (2019), no. 4, 709–725.
35.S.A. Marano, P. Winkert, On a quasilinear elliptic problem with convection term and nonlinear boundary condition, Nonlinear Anal. 187 (2019), 159–169.
34.D. Motreanu, P. Winkert, Existence and asymptotic properties for quasilinear elliptic equations with gradient dependence, Appl. Math. Lett. 95 (2019), 78–84.
33.N.S. Papageorgiou, P. Winkert, Nonlinear systems with Hartman-type perturbations, Monatsh. Math. 190 (2019), no. 2, 389–404.
32.G. Marino, P. Winkert, Moser iteration applied to elliptic equations with critical growth on the boundary, Nonlinear Anal. 180 (2019), 154–169.
31.N.S. Papageorgiou, P. Winkert, Solutions with sign information for nonlinear nonhomogeneous problems, Math. Nachr. 292 (2019), no. 4, 871–891.
30.N.S. Papageorgiou, P. Winkert, Singular p-Laplacian equations with superlinear perturbation, J. Differential Equations 266 (2019), no. 2-3, 1462–1487.
29.N.S. Papageorgiou, P. Winkert, Double resonance for Robin problems with indefinite and unbounded potential, Discrete Contin. Dyn. Syst. Ser. S 11 (2018), no. 2, 323–344.
28.N. S. Papageorgiou, P. Winkert, Asymmetric (p,2)-equations, superlinear at +∞, resonant at -∞, Bull. Sci. Math. 141 (2017), no. 5, 443–488.
27.S. El Manouni, H. Hajaiej, P. Winkert, Nonlinear problems for the fractional Laplacian in RN involving parameters, Minimax Theory Appl. 2 (2017), no. 2, 265–283.
26.N.S. Papageorgiou, P.Winkert, Positive solutions for nonlinear nonhomogeneous Dirichlet problems with concave-convex nonlinearities, Positivity 20 (2016), no. 4, 945–979.
25.P. Winkert, R. Zacher, Global a priori bounds for weak solutions to quasilinear parabolic equations with nonstandard growth, Nonlinear Anal. 145 (2016), 1-23.
24.N.S. Papageorgiou, P. Winkert, Nonlinear Robin problems with a reaction of arbitrary growth, Ann. Mat. Pura Appl. (4) 195 (2016), no. 4, 1207–1235.
23.G. Bonanno, G. D’Aguì, P. Winkert, Sturm-Liouville equations involving discontinuous nonlinearities, Minimax Theory Appl. 1 (2016), no. 1, 125–143.
22.N.S. Papageorgiou, P. Winkert, Nonlinear nonhomogeneous Dirichlet equations involving a superlinear nonlinearity, Results Math. 70 (2016), no. 1, 31–79.
21.P. Winkert, R. Zacher, Corrigendum to „A priori bounds for weak solutions to elliptic equations with nonstandard growth“ [Discrete Contin. Dyn. Syst. Ser. S 5 (2012), 865–878.], Discrete Contin. Dyn. Syst. Ser. S, published online as note, 2015, 1–3.
20.S. El Manouni, N.S. Papageorgiou, P. Winkert, Parametric nonlinear nonhomogeneous Neumann equations involving a nonhomogeneous differential operator, Monatsh. Math. 177 (2015), no. 2, 203–233.
19.N.S. Papageorgiou, P. Winkert, Resonant (p; 2)-equations with concave terms, Appl. Anal. 94 (2015), no. 2, 342–360.
18.P. Winkert, On the boundedness of solutions to elliptic variational inequalities, Set-Valued Var. Anal. 22 (2014), no. 4, 763–781.
17.G. Bonanno, P. Winkert, Multiplicity results to a class of variational-hemivariational inequalities, Topol. Methods Nonlinear Anal. 43 (2014), no. 2, 493–516.
16.N.S. Papageorgiou, P. Winkert, On a parametric nonlinear Dirichlet problem with subdiffusive and equidiffusive reaction, Adv. Nonlinear Stud. 14 (2014), no. 3, 747–773.
15.G. Bonanno, D. Motreanu, P. Winkert, Boundary value problems with nonsmooth potential, constraints and parameters, Dynam. Systems Appl. 22 (2013), no. 2-3, 385–396.
14.P. Winkert, Multiplicity results for a class of elliptic problems with nonlinear boundary condition, Commun. Pure Appl. Anal. 12 (2013), no. 2, 785–802.
13.P. Winkert, R. Zacher, A priori bounds for weak solutions to elliptic equations with nonstandard growth, Discrete Contin. Dyn. Syst. Ser. S 5 (2012), no. 4, 865–878.
12.D. Motreanu, P. Winkert, On the Fučík spectrum for the p-Laplacian with Robin boundary condition, Nonlinear Anal. 74 (2011), no. 14, 4671–4681.
11.G. Bonanno, D. Motreanu, P. Winkert, Variational-hemivariational inequalities with small perturbations of nonhomogeneous Neumann boundary conditions, J. Math. Anal. Appl. 381 (2011), no. 2, 627–637.
10.P. Winkert, Multiple solution results for elliptic Neumann problems involving setvalued nonlinearities, J. Math. Anal. Appl. 377 (2011), no. 1, 121–134.
9.D. Motreanu, P. Winkert, Variational-hemivariational inequalities with nonhomogeneous Neumann boundary condition, Matematiche (Catania) 65 (2010), no. 2, 109–119.
8.P. Winkert, Sign-changing and extremal constant-sign solutions of nonlinear elliptic Neumann boundary value problems, Bound. Value Probl. 2010, Art. ID 139126, 22 pp.
7.P. Winkert, Local C1-minimizers versus local W1,p-minimizers of nonsmooth functionals, Nonlinear Anal. 72 (2010), no. 11, 4298–4303.
6.P. Winkert, L∞-estimates for nonlinear elliptic Neumann boundary value problems, NoDEA Nonlinear Differential Equations Appl. 17 (2010), no. 3, 289–302.
5.P. Winkert, Constant-sign and sign-changing solutions for nonlinear elliptic equations with Neumann boundary values, Adv. Differential Equations 15 (2010), no. 5-6, 561–599.
4.P. Winkert, Entire extremal solutions for elliptic inclusions of Clarke’s gradient type, Z. Anal. Anwend. 29 (2010), no. 1, 63–75.
3.S. Carl, P. Winkert, General comparison principle for variational-hemivariational inequalities, J. Inequal. Appl. 2009, Art. ID 184348, 29 pp.
2.P. Brückmann, P. Winkert, T-symmetrical tensor differential forms with logarithmic poles along a hypersurface section, Int. J. Pure Appl. Math. 46 (2008), no. 1, 111–136.
1.P. Winkert, Discontinuous variational-hemivariational inequalities involving the p-Laplacian, J. Inequal. Appl. 2007, Art. ID 13579, 11 pp.

Vorworte

1.P. Candito, R. Livrea, P. Winkert, Special issue on the occasion of the 70th birthday of Professor Siegfried Carl, Nonlinear Anal. Real World Appl. 74 (2023), Paper No. 103959.

Buchbeiträge

2.D. Motreanu, P. Winkert, Elliptic problems with nonhomogeneous differential operators and multiple solutions, Chapter 15 in: Mathematics Without Boundaries (Surveys in Pure Mathematics), 357–379, Springer, New York, 2014.
1.D. Motreanu, P. Winkert, The Fucík spectrum for the negative p-Laplacian with different boundary conditions, Chapter 28 in: Nonlinear Analysis (Stability, Approximation, and Inequalities), 471–485, Springer, New York, 2012.

Qualifizierungsarbeiten

3.P. Winkert, Global a priori bounds and multiplicity results for quasilinear elliptic equations and inequalities, Habilitation thesis, Technische Universität Berlin, December 2015.
2.P. Winkert, Comparison principles and multiple solutions for nonlinear elliptic problems, PhD thesis, Martin-Luther-Universität Halle-Wittenberg, July 2009.
1.P. Winkert, T-symmetrische Tensor-Differentialformen mit logarithmischen Polen, Diploma (Master) thesis, Martin-Luther-Universität Halle-Wittenberg, July 2006.