Robotics and Biology Laboratory

Robotics Related

Estimating the In-Hand Pose of Objects Using Active Acoustic Sensing and Bayesian Filtering

Aleksander Gloukhman

It is very useful if robots know the pose of objects not only when it sees them lying on a table, but also while these objects are grasped. But while objects are grasped, their pose often cannot easily be perceived visually. Either because the hand itself obstructs the view, or because the task requires visual attention elsewhere. Thus we suggest to estimate the in-hand pose of objects using acoustic sensing. This is a novel sensing technique that enables contact estimation.


Easy grasping with a fixated robot

Amon Benson

Humans interact with objects in the 3D world robustly without complicated 3D sensors like lidars. Instead they only have 2D sensors in the eyes. If compared (rather naively) to widely available camera sensors, the human retina has vastly diminished capabilities, such as resolution, refresh rate etc. How then can humans interact with the 3D world so robustly?


Learning of Drift-Prediction Models to Increase the Accuracy of Air-Mass Controllers

Air mass control for soft pneumatic actuators is the proper actuation scheme to avoid compromising the intrinsic compliance of the system during control. The enclosed air-mass in a soft system is independent of shape changes during interaction with the environment. In this work, we investigate different data-driven techniques to increase the accuracy of a given air mass controller.