Functional Materials

Dr. Johannes Schmidt

Building BA
Room 215
Address Hardenbergstr. 40
10623 Berlin
FacultyII
Department ofChemistry
AdministrationBA2
Contact forX-ray photoelectron spectroscopy

Publications

2021

75) Environmentally Benign Formation of Nickel Hexacyanoferrate-Derived Mesoframes for Heterogeneous Catalysis
Kessler, S.; Reinalter, E.R.; Schmidt, J.; Colfen, H.;
Nanomaterials, 2021, 11, 10, 2756.

 

74) Oxygen-rich poly-bisvanillonitrile embedded amorphous zirconium oxide nanoparticles as reusable and porous adsorbent for removal of arsenic species from water
Seynnaeve, B.; Folens, K.; Krishnaraj, C.; Ilic, I.K.; Liedel, C.; Schmidt, J.; Verberckmoes, A.; Du Laing, G.; Leus, K.; Van der Voort, P.;
J. Hazard. Mater., 2021, 413.

 

73) Guanine condensates as covalent materials and the concept of cryptopores
Kossmann, J.; Piankova, D.; Tarakina, N.V.; Heske, J.;  Kuhne, T.D.; Schmidt, J.; Antonietti, M.;Lopez-Salas, N.;
Carbon, 2021, 172, 497-505.

 

72) A Ru-Complex Tethered to a N-Rich Covalent Triazine Framework for Tandem Aerobic Oxidation-Knoevenagel Condensation Reactions
Watson, G.; Derakhshandeh, P.G.; Abednatanzi, S.; Schmidt, J.; Leus, K.; Van der Voort, P.;
Molecules, 2021, 26, 4.

2020

71) A soft molecular 2Fe-2As precursor approach to the synthesis of nanostructured FeAs for efficient electrocatalytic water oxidation
Beltran-Suito, R.; Forstner, V.; Hausmann, J.N.; Mebs, S.; Schmidt, J.; Zaharieva, I.; Laun, K.; Zebger, I.; Dau, H.; Menezes, P.W.;
Chem Sci., 2020, 11, 43, 11834-11842.

 

70) Illustrating the Role of Quaternary-N of BINOL Covalent Triazine-Based Frameworks in Oxygen Reduction and Hydrogen Evolution Reactions
Jena, H.S.; Krishnaraj, C.; Parwaiz, S.; Lecoeuvre, F.; Schmidt, J.; Pradhan, D.; Van der Voort, P.
Appl. Mater. Interfaces, 2020, 12, 40, 44689-44699.

 

69) Immobilization of an Iridium Pincer Complex in a Microporous Polymer for Application in Room-Temperature Gas Phase Catalysis
Konig, M.; Rigo, M.; Chaoui, N.;  Ngoc, T.T.;  Epping, J.D.;  Schmidt, J.;  Pachfule, P.; Ye, M.Y.; Trunk, M.; Teichert, .J.F.;
Angew. Chem. Int. Ed., 2022, 59, 45, 19830-19834.

 

68) Mechanistic studies of atomic layer deposition on oxidation catalysts - AlO(x)and PO(x)deposition
Knemeyer, K.; Hermida, MP.; Ingale, P.; Schmidt, J.; Krohnert, J.; d'Alnoncourt, R.N.; Driess, M.;  Rosowski, F.;
Phys. Chem. Chem. Phys., 2020, 22, 32, 17999-18006.

 

67) Ultralight covalent organic framework/graphene aerogels with hierarchical porosity
Li, C.; Yang, J.; Pachfule, P.; Li, S.;  Ye, M.; Schmidt, J.; Thomas, A.;
Nat. Commun., 2020.

 

66) Combining Phage Display and Next-generation Sequencing for Materials Sciences: A Case Study on Probing Polypropylene Surfaces
Juds, C.; Schmidt, J.; Weller, M. G.; Lange, T.; Beck, U.; Conrad, T.; Boerner, H. G.;
J. Am. Chem. Soc., 2020.

 

    65) Metal-free Activation of Molecular Oxygen by Covalent Triazine Frameworks for Selective Aerobic Oxidation
    Abednatanzi, S.; Gohari Derakhshandeh, P.; Leus, K.; Vrielinck, H.; Callens, F.; Schmidt, J.; Savateev, A.; Van Der Voort, P.;
    Sci. Adv., 2020; 6.

     

    64) Crystalline Copper Selenide as a Reliable Non‐Noble Electro(pre)catalyst for Overall Water‐Splitting
    Chakraborty, B.; Beltrán-Suito, R.; Hlukhyy, V.; Schmidt, J.; Menezes, P.W.; Driess, M.;
    ChemSusChem, 2020.

     

    63) Synthesis of a Porous C3N-Derived Framework with High Yield by Gallic Acid Cross-Linking Using Salt Melts
    Tian, Z.; Heil, T.; Schmidt, J.; Cao, S.; Antonietti, M.;
    ACS Appl. Mater. Interfaces 2020, 12, 11, 13127-13133.

     

    62) Polymerization in Carbone: A Novel Method for the Synthesis of More Sustainable Electrodes and Their Application as Cathodes for Lithium–Organic Energy Storage Materials Based On Vanillin
    Ilic I. K.; Leus, K.; Schmidt, J.; Hwang, J.; Maranska, M.; Eigler, S.; Liedel, C.;
    ACS Sustainable Chem. Eng., 2020, 8, 8.

     

    61) Covalent triazine framework/carbon nanotube hybrids enabling selective reduction of CO2 to CO at low overpotential
    Laemont, A.; Abednatanzi, S. Derakshandeh, P. G.; Verbruggen, F.; Fiset, E.; Qin, Q.; Van Daele, K.; Meledina, M.; Schmidt, J.; Oschatz, M.; Van Der Voort, P.; Rabaey, K.; Antonietti, M.; Breugelmans, T.; Leus, K.;
    Green Chem., 2020.

     

    60) Functionalising hydrothermal carbons for catalysis – Investigating Solid Acids in esterification reactions
    Bosilj, M.; Bozoglu, M.; Schmidt, J.; Aguiar, P.; Fischer, A.; White, R.J.;
    Catal. Sci. Technol., 2020.

     

    59) Stannites – A New Promising Class of Durable Electrocatalysts for Efficient Water Oxidation Driess, M.; Hausmann, J.N.; Heppke, E.M.; Beltran-Suito, R.; Schmidt, J.; Mühlbauer, M.; Lerch, M.; Menezes, P.W.;
    ChemCatChem, 2019.

    2019

    58) Electrochemical Fixation of Nitrogen and Its Coupling with Biomass Valorization with a Strongly Adsorbing and Defect Optimized Boron–Carbon–Nitrogen Catalyst
    Qin,Q.; Heil, T.; Schmidt, J.; Schmallegger, M.; Gescheidt, G.; Antonietti, M.; Oschatz, M.;
    ACS Appl. Energy Mater., 2019.

     

    57) Effect of Building Block Transformation in Covalent Triazine Based Frameworks for Enhanced CO2 Uptake and Metal Free Heterogeneous Catalysis
    Jena, H.S.; Krishnaraj, C.; Schmidt, J.; Leus, K.; Van Hecke, K.; Van Der Voort, P.;
    Chem. Eur. J., 2019. 

     

    56) Sulfur- and Nitrogen-Containing Porous Donor–Acceptor Polymers as Real-Time Optical and Chemical Sensors
    Kochergin, Y. S.; Noda, Y.; Kulkarni, R.; Škodáková, K.; Tarábek, J.; Schmidt, J.; Bojdys, M. J.;
    Macromolecules, 2019.

     

    55) Lanthanide grafted phenantroline-polymer for physiological temperature sensing
    Vanden Bussche, F.; Kaczmarek, A. M.; Schmidt, J.; Stevens, C. V.; Van Der Voort, P.;
    J. Mater. Chem. C, 2019.

     

    54) Boosting Electrocatalytic Hydrogen Evolution Activity with a NiPt3@NiS Hetero-Nanostructure Evolved from a Molecular Nickel-Platinum Precursor
    Panda, C.; Menezes, P. W.; Yao, S.; Schmidt, J.; Walter, W.; Hausmann, J. N.; Driess, M.;
    J. Am. Chem. Soc., 2019.

     

    53) Donor-acceptor Covalent Organic Frameworks for visible light induced free radical polymerization
    Pachfule, P.; Acharjya, A.; Roeser, J.; Sivasankaran, R. P.; Ye, M.-Y.; Brückner, A.; Schmidt, J.; Thomas, A.;
    Chem. Sci., 2019.

     

    52) Triggering White-Light Emission in a 2D Imine Covalent Organic Framework Through Lanthanide Augmentation
    Krishnaraj, C.; Kaczmarek, A. M.; Jena, H. S.; Leus, K.; Chaoui, N.; Schmidt, J.; Van Deun, R.; Van Der Voort, P.
    ACS Applied Materials & Interfaces 2019.

     

    51) Partially Delocalized Charge in Fe-doped NiCo2S4 Nanosheet- Mesoporous Carbon-Composites for High-Voltage Supercapacitors
    Lai, F.; Feng, R.; Heil, T.; Tian, Z.; Schmidt, J.; Wang, G.; Oschatz, M.
    J. Mater. Chem. A., 2019.

     

    50) Janus‐Type Hybrid Paper Membranes
    Nau, M.; Herzog, N.; Schmidt, J.; Meckel, T.; Andrieu‐Brunsen, A.; Biesalski, M.
    Adv. Mater. Interfaces 2019, 1900892.

     

    49) Enhanced electrocatalytic N2 reduction via partial anion substitution in titanium oxide‐carbon composites
    Qin, Q.; Zhao, Y.; Schmallegger, M.; Heil, T.; Schmidt, J.; Walczak, R.; Gescheidt-Demner, G.; Jiao, H.; Oschatz, M.
    Angew. Chem. Int. Ed., 2019.

     

    48) One pot conversion of glucose to ethyl levulinate over a porous hydrothermal acid catalyst in green solvents
    Bosilj, M.; Schmidt, J.; Fischer, A.; White R. J.
    RSC Advances 2019.

     

    47) Silica-Templated Covalent Organic Framework-Derived Fe–N-Doped Mesoporous Carbon as Oxygen Reduction Electrocatalyst
    Zhao, X.; Pachfule, P.; Li, S.; Langenhahn, T.; Ye, M.; Tian, G.; Schmidt, J.; Thomas, A.
    Chem. Mater., 2019

     

    46) Suppression of Competing ReactionChannels by Pb Adatom Decoration of Catalytically Active Cu Surfaces During CO2 Electroreduction
    Kim, C.; Möller, T.; Schmidt, J.; Thomas, A.; Strasser, P.
    ACS Catal., 2019,  9, 2, 1482-1488.

     

    45) Macro/Microporous Covalent Organic Frameworks for Efficient Electrocatalysis
    Zhao, X.; Pachfule, P.; Li, S.; Langenhahn, T.; Ye, M.; Schlesiger, C.; Praetz, S.; Schmidt, J.; Thomas, A.
    JACS, 2019.

     

    44) High specific surface area ordered mesoporous silica COK-12 with tailored pore size
    Henning, L. M.; DíazCubas, D.; Colmenares, M. G.; Schmidt, J.; Bekheet, M. F.; Pauw, B.R.; Gurlo, A.; Simon, U.
    Microporous Mesoporous Mat., 2019.

     

    43) Tuning the porosity and photocatalytic performance of triazine‐based graphdiyene polymers via polymorphism
    Schwarz, D.; Acharjya, A.; Ichangi, A.; Kochergin, Y. S.; Lyu, P.; Opanasenko, M. V.; Tarábek, J.; Vacek Chocholoušová, J.; Vacek, J.; Schmidt, J.; Nachtigall, P.; Thomas, A.; Bojdys, M.
    ChemSusChem 2019, 12, 194.

    2018

    42) Integration of an N‐heterocyclic carbene precursor into a covalent triazine framework for organocatalysis
    Troschke, E.; Nguyen, K.; Paasch, S.; Schmidt, J.; Nickerl, G.; Senkovska, I.; Brunner, E.; Kaskel, S.
    Chem. Eur. J. 2018, 24, 18629.

     

    41) Exploring the “Goldilocks Zone” of Semiconducting Polymer Photocatalysts via Donor-Acceptor Interactions
    Kochergin, Y. S.; Schwarz, D.; Amitava, A.; Ichangi, A.; Kulkarni, R.; Eliášová, P.; Vacek, J.; Schmidt, J.; Thomas, A.; Bojdys, M. J.
    Angew. Chem. Int. Ed. 2018, 57, 14188.

     

    40) Linear and Cross-Linked Ionic Liquid Polymers as Binders in Lithium–Sulfur Batteries
    Vizintin, A.; Guterman, R.; Schmidt, J.; Antonietti, M.; Dominko, R.
    Chem. Mater., 2018, 30 (15), 5444-5450.

     

    39) Tailoring of ordered mesoporous silica COK-12: Room temperature synthesis of mesocellular foam and multilamellar vesicles
    Colmenares, M. G.; Simon, U.; Schmidt, F.; Dey, S.; Schmidt, J.; Thomas, A.;
    Gurlo, A.
    Microporous Mesoporous Mat., 2018, 267, 142-149.

     

    38) 2H‐Naphthopyran‐Based Three‐State Systems: From Solution Studies to Photoresponsive Organic/Inorganic Hybrid Materials
    Vlajić, M; Schmidt, J; Thomas, A.; Rück‐Braun, K.
    ChemPhotoChem 2018, 2, 952.

     

    37) C2NxO1−x framework carbons with defined microporosity and Co-doped functional pores
    Tian, Z.; Fechler, N.; Oschatz, M.; Hei, T.; Schmidt, J.; Yuan, S.; Antonietti, M.
    J. Mater. Chem. A, 2018, 6, 19013-19019.

     

    36) Acetylacetone Covalent Triazine Framework: An Efficient Carbon Capture and Storage Material and a Highly Stable Heterogeneous Catalyst
    Jena, H.S.; Krishnaraj, C.; Wang, G.; Leus, K.; Schmidt, J.; Chaoui, N.; Van Der Voort, P.
    Chem. Mat., 2018, 30 (12), 4102-4111.

     

    35) Template- and Metal-free Synthesis of Nitrogen-rich Nanoporous Noble Carbon Materials by Direct Pyrolysis of a Preorganized Hexaazatriphenylene Precursor
    Walczak, R.; Kurpil, B.; Savateev, A.; Heil, T.; Schmidt, J.; Qin, Q.; Antonietti, M.; Oschatz, M.
    Angew. Chem. Int. Ed., 2018, 130, 10926.

     

    34) Bifunctional Electrocatalysts for Overall Water Splitting from a Fe/Ni‐based Bimetallic Metal Organic Framework/Dicyandiamide Composite
    Zhao, X.; Pachfule, P.; Li, S.; Simke, J.; Schmidt, J.; Thomas, A.
    Angew. Chem. Int. Ed., 2018, 57, 8921.

     

    33) Modification of salt‐templated carbon surface chemistry for efficient oxidation of glucose with supported gold catalysts
    Lama, S.; Schmidt, J.; Malik, A.; Walczak, R.; Silva, D. V.; Völkel, A.; Oschatz, M.
    ChemCatChem, 2018, 10, 2458.

     

    32) Formation and Properties of Poly(Ionic Liquid)–Carbene Nanogels Containing Individually Stabilized Silver Species
    Miao, H.; Schmidt, J.; Heil, T.; Antonietti, M.; Willinger, M.; Guterman R.
    Chem. Eur. J., 2018, 24, 5754.

     

    31)Investigation of the role of the Na2WO4/Mn/SiO2 catalyst composition in the oxidative coupling of methane by chemical looping experiments
    Fleischer, V.; Parishan, S.; Simon, U.; Colmenares, M.; Görke, O.; Gurlo, A.; Riedel, W.; Thum, L.; Schmidt, J.; Risse, T.; Dinse, K-P.; Schomäcker, R.
    J. Catal., 2018, 360, 102-117.

     

    30) Diacetylene Functionalized Covalent Organic Framework (COF) for Photocatalytic Hydrogen Generation
    Pachfule, P.; Acharjya, A.; Roeser, J.; Langenhahn, T.; Schwarze, M.; Schomaecker, R.; Thomas, A.; Schmidt, J.
    J. Am. Chem. Soc., 2018, 140 (4), 1423-1427.

     

    29) Active Salt/Silica-Templated 2D Mesoporous FeCo-Nx-Carbon as Bifunctional Oxygen-Electrodes for Zn-Air Batteries
    Li, S.; Chen. C.; Zhao, X.; Schmidt, J.; Thomas, A.
    Angew. Chem. Int. Ed., 2018, 577, 1856.

     

    28) Ionic Liquid-Assisted Synthesis of Mesoporous Carbons with Surface Enriched Nitrogen for Hydrogen Evolution Reaction
    Zhao, X.; Li, S.; Cheng, H.; Schmidt, J.; Thomas, A.
    ACS Appl. Mater. Interfaces, 2018, 10 (4), 3912-3920.

     

    2014-2017

    27) Salt-templated porous carbon-carbon composite electrodes for application in vanadium redox flow batteries
    Schnucklake, M.;Kuecken, S.;Fetyan, A.;Schmidt, J.;Thomas, A.;Roth, C.;
    J. Mater. Chem. A, 2017, 5, 25193-25199.

     

    26) Optimisation of Surface-Initiated Photoiniferter-Mediated Polymerisation under Confinement, and the Formation of Block Copolymers in Mesoporous Films
    Tom, J.C.; Brilmayer, R.; Schmidt, J.; Andrieu-Brunsen, A.;
    Polymers, 2017, 9(10), 539.

     

    25) Twinned Growth of Metal-Free, Triazine-Based Photocatalyst Films as Mixed-Dimensional (2D/3D) van der Waals Heterostructures
    Schwarz, D.; Noda, Y.; Klouda, J.; Schwarzová-Pecková, K.; Tarábek, J.; Rybáček, J.; Janoušek, J.; Simon, F.; Opanasenko, M. V.; Čejka, J.; Acharjya, A.; Schmidt, J.; Selve, S.; Reiter-Scherer, V.; Severin, N.; Rabe, J. P.; Ecorchard, P.; He, J.; Polozij, M.; Nachtigall, P.; Bojdys, M. J.;
    Adv. Mat., 2017, 29, 1703399.

     

    24) Tailored band gaps in sulphur and nitrogen containing porous donor-acceptor polymers
    Schwarz, D.; Kochergin, Y. S.; Acharja, A.; Ichangi, A.; Opanasenko, M. V.; Čejka, J.; Lappan, U.; Arki, P.; He, J.; Schmidt, J.; Nachtigall, P.; Thomas, A.; Bojdys, M. J.;
    Chem. Eur. J., 2017, 23, 53, 13023-13027.

     

    23) Trends and challenges for microporous polymers
    Chaoui, N; Trunk, M; Dawson, R; Schmidt, J; Thomas, A;
    Chem. Soc. Rev., 2017, 46, 3302-3321.

     

    22) Structure–Thermodynamic-Property Relationships in Cyanovinyl-Based Microporous Polymer Networks for the Future Design of Advanced Carbon Capture Materials
    Yassin, A.; Trunk, M.; Czerny, F.; Fayon, P.; Trewin, A.; Schmidt, J.; Thomas, A.;
    Adv. Funct. Mater. 2017, 27, 1700233.

     

    21) Eco-fabrication of hierarchical porous silica monoliths by ice-templating of rice husk ashBahrami, A; Simon, U; Soltani, N; Zavareh, S; Schmidt, J; Pech-Canul, MI; Gurlo, A;  
    Green Chem., 2017, 19, 188-195.           

     

    20) Light-Switchable Polymers of Intrinsic Microporosity
    Becker, D; Konnertz, N; Bohning, M; Schmidt, J; Thomas, A;
    Chem Mat., 2016, 28, 8523-8529.

                                                                                      

    19) Copper-Free Sonogashira Coupling for High-Surface-Area Conjugated Microporous Poly(aryleneethynylene) Networks
    Trunk, M; Herrmann, A; Bildirir, H; Yassin, A; Schmidt, J; Thomas, A;
    Chem Eur. J., 2016, 22, 7179-7183.

                                                

    18) Chemical RedOx Properties of a Donor-Acceptor Conjugated Microporous Dithienothiophene-Benzene co-Polymer Formed via Suzuki-Miyaura Cross-coupling
    Bildirir, H; Osken, I; Schmidt, J; Ozturk, T; Thomas, A;
    ChemistrySelect, 2016, 1, 4, 748-751.

                                               

    17) 1,2,4-Triazole-Based Approach to Noble-Metal-Free Visible-Light Driven Water Splitting over Carbon Nitrides
    Dontsova, D; Fettkenhauer, C; Papaefthimiou, V; Schmidt, J; Antonietti, M;
    Chem. Mat., 2016, 28, 772-778.

     

    16) Conversion of amorphous polymer networks to covalent organic frameworks under ionothermal conditions: a facile synthesis route for covalent triazine frameworks
    Kuecken, S; Schmidt, J; Zhi, LJ; Thomas, A;
    J. Mater. Chem. A, 2015, 3, 24422-24427.

                           

    15) Microporous polymer network films covalently bound to gold electrodes
    Becker, D; Heidary, N; Horch, M; Gernert, U; Zebger, I; Schmidt, J; Fischer, A; Thomas, A;
    Chem. Commun., 2015, 51, 4283-4286.

     

    14) Tuning porosity and activity of microporous polymer network organocatalysts by co-polymerisation
    Schmidt, J; Kundu, DS; Blechert, S; Thomas, A;
    Chem. Commun., 2014, 50, 3347-3349. 

     

    2011-2013

    13) An Anionic Microporous Polymer Network Prepared by the Polymerization of Weakly Coordinating Anions
    Fischer, S; Schmidt, J; Strauch, P; Thomas, A;
    Angew. Chem. Int. Ed., 2013, 52, 12174-12178.

     

    12) Room Temperature Synthesis of Heptazine-Based Microporous Polymer Networks as Photocatalysts for Hydrogen Evolution
    Kailasam, K; Schmidt, J; Bildirir, H; Zhang, GG; Blechert, S; Wang, XC; Thomas, A;
    Macromol. Rapid Commun., 2013, 34, 1008-1013.

     

    11) Microporous Polymer Networks (MPNs) Made in Metal-Free Regimes: Systematic Optimization of a Synthetic Protocol toward N-Arylcarbazole-Based MPNs
    Preis, E; Widling, C; Brunklaus, G; Schmidt, J; Thomas, A; Scherf, U;
    ACS Macro Lett., 2013, 2, 380-383.

     

    10) An Isoreticular Family of Microporous Metal-Organic Frameworks Based on Zinc and 2-Substituted Imidazolate-4-amide-5-imidate: Syntheses, Structures and Properties
    Debatin, F; Behrens, K; Weber, J; Baburin, IA; Thomas, A; Schmidt, J; Senkovska, I; Kaskel, S; Kelling, A; Hedin, N; Bacsik, Z; Leoni, S; Seifert, G; Jager, C; Gunter, C; Schilde, U; Friedrich, A; Holdt, HJ;
    Chem. Eur. J., 2012, 18, 11630-11640.          

     

    9) A Microporous Binol-Derived Phosphoric Acid
    Kundu, DS; Schmidt, J; Bleschke, C; Thomas, A; Blechert, S;
    Angew. Chem. Int. Ed., 2012, 51, 5456-5459.

     

    8) A Chiral Microporous Polymer Network as Asymmetric Heterogeneous Organocatalyst
    Bleschke, C; Schmidt, J; Kundu, DS; Blechert, S; Thomas, A;
    Adv. Synth. Catal., DEC 2011, 353, 3101-3106.                    

           

    7) Aromatic, microporous polymer networks with high surface area generated in Friedel-Crafts-type polycondensations
    Preis, E; Widling, C; Scherf, U; Patil, S; Brunklaus, G; Schmidt, J; Thomas, A;
    Polym. Chem., 2011, 2, 2186-2189. 

     

    6) Microporous sulfur-doped carbon from thienyl-based polymer network precursors
    Paraknowitsch, JP; Thomas, A; Schmidt, J;
    Chem. Commun., 2011, 47, 8283-8285.                        

                      

    5) Tunable absorption and emission wavelength in conjugated microporous polymers by copolymerization
    Brandt, J; Schmidt, J; Thomas, A; Epping, JD; Weber, J
    Polym. Chem., 2011, 2, 1950-1952.     

     

    2008-2010

    4) Micropore Analysis of Polymer Networks by Gas Sorption and Xe-129 NMR Spectroscopy: Toward a Better Understanding of Intrinsic Microporosity
    Weber, J; Schmidt, J; Thomas, A; Bohlmann, W;
    Langmuir, 2010, 26, 15650-15656.      

     

    3) Conjugated Microporous Polymer Networks via Yamamoto Polymerization
    Schmidt, J; Werner, M; Thomas, A;
    Macromolecules, 2009, 42, 4426-4429.                     

     

    2) Microporous Conjugated Poly(thienylene arylene) Networks
    Schmidt, J; Weber, J; Epping, JD; Antonietti, M; Thomas, A;
    Adv. Mat., 2009, 21, 702-705.

     

    1) Nanoscaled Discotic Liquid Crystal/Polymer Systems: Confinement Effects on Morphology and Thermodynamics
    Stillings, C; Martin, E; Steinhart, M; Pettau, R; Paraknowitsch, J; Geuss, M; Schmidt, J; Germano, G; Schmidt, HW; Gosele, U; Wendorff, JH;
    Mol. Cryst. Liquid Cryst., 2008, 495, 285-293.