Food Biosciences

Ongoing research projects

Optimization of structure formation in mixed plant protein gels

Project worker: M.Sc. Jasper Seibt                                                                                                                                                                 
A sustainable supply of healthy food for the world population requires a radical rethinking of food production and consumption, which experts also describe as the forthcoming fourth industrial revolution. Consumer attitudes and the opposing trend in the consumption of animal and plant-based foods show that this transformation process has entered an exponential phase. Plant proteins play a crucial role here, as they have a high level of consumer acceptance in contrast to other alternative protein sources (e.g. insect proteins). Challenges for the food industry are that plant proteins have a fundamentally different structure and thus also a different functionality in food. Additionally, plant proteins that are available on the market are structurally severely damaged due to their processing. This affects both their functionality and the quality of the food.

The present project focuses on gel-like foods, which are typical in the area of milk and meat alternatives. The aim of the present project is to systematically examine the connection between protein-protein interactions, the pre-aggregation of plant proteins and fractions of different botanical origins and the subsequent gel formation of these proteins. Based on this, recommendations for protein production and its use in food shall be derived.

Vegan scaffolds for cultivated meat

Project worker: M.Sc. Sabrina Bäther

The aim of this project is to produce and compare vegan plant-based scaffolds for cultivated meat in a "top down" approach through extrusion and in a "bottom up" approach through 3D-bioprinting. Highly porous structures are to be formed by using microphase-separated protein-polysaccharide-mixtures. In order to further increase the porosity, one of the components is subsequently dissolved using a thermal, chemical or enzymatic post-treatment. A high porosity enables the colonization and cultivation of the myocytes. The systematic screening of different raw materials, process conditions, post-treatment methods and cell cultures is used to create a "toolbox" for different types of products, which can be either marketed as completely new vegan products or as cultivated fish, poultry meat, beef, pork or minced meat.

Structural functionalities and phase behavior of alginate-protein-systems

Project worker: M.Sc. Sabrina Bäther

Alginate-gelatin composite gels are used in a wide range of food, cosmetic, drug and medicinal applications. Depending on the application, the composite gels have to meet different requirements. Hence, it is necessary to understand the structure formation in detail in order to assess structure-function relationships and to be able to control the functionality in a targeted manner. For 3D Bioprinting alginate-gelatin systems are a promising technology as they enable the formation of living tissue and organ models for regenerative medicine, pharmaceutical applications, and other biological studies. So far, the animal component gelatin has been used for the production of organ models as it has the required material properties.

The mechanistic understanding of the structure-functionality of alginate-gelatin-systems enables the replacement of the animal component gelatin with alternative proteins, such as soy or pea protein. This approach facilitates sustainable and future-oriented applications in the field of medical and pharmaceutical research. To elucidate the structural functionalities of the composite gels the molecular interactions, the phase behavior, rheological properties as well as the stability and porosity of the hydrogels are investigated.

Significance and control of the mechanical stress of stress-sensitive proteins during formulation in the premix emulsification process

(DFG program SPP1934 „Dispersity, structure and phase changes of proteins and biological agglomerates in biotechnological processes; 2016-2022)

Project workers: Dr. Anja Heyse (food technology and materials science), Dr. Helena Schestkowa, M.Sc. Sabrina Bäther

The aim of the project is to quantify the mechanical stress (stress residence time) and resulting process-induced structural changes on proteins and bio-agglomerates during premix membrane emulsification. Based hereon underlying mechanisms of stress response for proteins and bio-agglomerates are identified and concepts for process design and control are derived. It is assumed that the structural change of proteins depends on the stress residence time in the membrane. In the first part of the project, structural changes of β-lactoglobulin in the membrane as a function of the stress residence time were investigated at the process and on the structural level. In the upcoming part of the project, the intermolecular interactions of proteins and interactions within the process environment as well as sorption phenomena at the membrane will be systematically investigated. Protein structures will be varied by using structurally modified variants of β-lactoglobulin (high-pressure-modified protein, amyloid-like aggregates, recombinant proteins). The complex material properties were studied using high-resolution protein analysis such as Fourier transform infrared spectroscopy and circular dichroism. The analytical portfolio will be extended by osmometry and analytical ultracentrifugation. Simulation techniques will be completed with an extended approach of molecular dynamics. Furthermore, in the second part of the project, the enzyme lipase will be used as a model protein with complex tertiary and quaternary structure. Change in its activity will be investigated and thus knowledge about process-related stress and loss of functionality in biological systems will be generated. To fulfill the aim of the specific project, a close cooperation between the Department of Multiphase Flow of the Leibniz Institute in Bremen and the Department of Food Technology and Food Material Science of the Technical University Berlin with their competencies in analysis and modeling at the process and the structural level is required. Specific competencies on the characterization of intermolecular interactions and sorption processes are provided by the Department of Food Colloids of the Technical University Berlin. Close cooperation with other partners within the priority program will lead to a generalized understanding of process-induced stress and its impact on material properties of biological systems in a wide range of different scenarios. This understanding will allow a more targeted process engineering and adaption of biological systems to their specific process environment.

Phase behavior and intermolecular interactions of complex biopolymer systems

Project worker: M.Sc. Christoph Hundschell

Polysaccharides and proteins are used individually or in combination in numerous food systems as ingredients with added value. With their help, the mouthfeel, structure, stability and storage life of the products can be positively influenced. To tailor biopolymers and their blends for these functions, the relationship on the microscopic and macroscopic level must be understood. On the microscopic level, the macromolecular structure, the affinity to the surrounding matrix and the interactions between the individual polymers are important. On the macroscopic level, these variables determine functional properties such as the increase of the viscosity or gel formation as well as the tendency to phase separate.

Mixtures of model proteins and previously unused microbial polysaccharides are analyzed, which in addition to their functional properties have a prebiotic effect and thus a nutritional-physiological added value. Different concentrations and volume fractions of the biopolymers are investigated while varying the molecular weight, the pH value, the ionic strength and the temperature. In addition to the phase behavior and the molecular interactions, the rheological properties have to be characterized in order to understand the formation of the structures on a micro and macromolecular level. This enables the characterization of the structure-functionalities and targeted application of these biopolymers.

Kontakt

Office 207
Room KL-H 207
Address Königin-Luise-Str. 22
14195 Berlin
Consultation hourRegistration via mail Wednesday 11:00-12:00