The 3D velocity field of liquid over complex surfaces is investigated using a Stereo-µ-Particle Image Velocimetry (µSPIV) setup. The influence of micro- and macro-structures on the momentum transport is investigated in order to fundamentally understand flow patterns and structures in structured packings of chemical plants. Moreover, the long term objective is to identify the influence of those structures on mass transfer due to induced manipulations on the film structures by e.g. vortices.
For understanding liquid film flow, characteristic properties like thickness and wetting behavior are crucial. In order to develop accurate models for the design of separation processes, fundamental experiments are carried out by both Light Induced Fluorescence and Structured Light Scanning.
Dynamic contact line simulations of droplets and rivulets on solid surfaces are carried out with an in-house code based on the Cahn-Hillard-Navier-Stokes Equations. The Finite Element code was especially developed as a modular system in order to test submodels and formulations for energy potentials against each other efficiently.
By developing measurement cells with clearly defined boundary conditions, the fluid dynamics in hanging films and the dripping behavior are to be described. Here, the film thickness is identified by optical methods. Experimental parameter identification is used to analyze and evaluate the flow phenomena of liquid film flows.
Volume of Fluid (VoF) simulations for one and two phase flows are conducted using OpenFOAM® for various environments. Validation can be ensured by carrying out specific experimental investigations as well. On that basis a new Meso-Scale Model for simulating packed columns is developed.
In order to carry out fundamental research on the field of heat transfer between rolling particles and walls the OpenFOAM® an own Finite Volume solver was developed based on the standard solver chtMultiRegionFOAM. The system was investigated in laminar and turbulent flow regime with Direct Numerical Simulations in respect to both, turbulence and heat transfer.