Mathematics - Analysis and Applications

Prof. Dr. Ruming Zhang

 

 

 

Curriculum Vitae

05/2023 Tenure-Track Professor, TU Berlin
10/2018 - 04/2023 Junior Group Leader, KIT
12/2015 - 09/2018, Marie-Curie Fellow, University of Bremen

Awards (or Research Grants)

Research Projects

11/2019 - presentDFG grant number 433126998, Higher order numerical methods for acoustic scattering problems with locally perturbed periodic structures
12/2015 - 12/2017Marie-Curie COFUND Fellowship — Bremen TRAC, European Commission FP7-PEOPLE number 600411

Publications

  1. R. Zhang. Higher order convergence of perfectly matched layers in 3D bi-periodic surface scattering problems. To appear in SIAM J. Numer. Anal., 2023. 
  2. T. Arens and R. Greismaier and R. Zhang. Monotonicity-based shape reconstruction for an inverse scattering problem in a waveguide. Inverse Problems 39(7), 075009 2023.

  3. R. Zhang. A spectral decomposition method to approximate DtN maps in complicated waveguides. SIAM J. Numer. Anal. 61(3), 1195 - 1217, 2023.

  4. R. Zhang. Numerical methods for scattering problems from multi-layers with different periodicities. Numer. Methods Particial Differential Equations 39(2), 1778-1798, 2023.

  5. R. Zhang. Expoenential convergence of perfectly matched layers for scattering problems with periodic surfaces. SIAM J. Numer. Anal. 60(2), 804-823, 2022.

  6. R. Zhang. High order complex contour discretization methods to simulate scattering problems in locally perturbed periodic waveguides. SIAM J. Sci. Comput. 44(5), B1257-B1281, 2022.

  7. R. Zhang. Numerical method for scattering problems in periodic waveguides. Numer. Math. 148(4), 959–996, 2021.

  8. R. Zhang. Spectrum Decomposition of Translation Operators in Periodic Waveguide. SIAM J. Appl. Math. 81(1), 233-257, 2021.

  9. X. Liu and R. Zhang. Near-field imaging of locally perturbed periodic surfaces. Inverse Problems 35(11), 114003, 2019.

  10. A. Lechleiter and R. Zhang. The reconstruction of a local perturbation in periodic structures. Inverse Problems 34(3), 035006, 2018.

  11. R. Zhang. A high order numerical method for scattering from locally perturbed periodic surfaces. SIAM J. Sci. Comput. 40(4), A2286-A2314, 2018.

  12. B. Zhang and R. Zhang. An FFT-based algorithm for efficient computation of Green's functions for the Helmholtz and Maxwell's equations in periodic domains. SIAM J. Sci. Comput. 40(3), B915-B941, 2018.

  13. R. Zhang and B. Zhang. A new integral equation formulation for scattering by penetrable diffraction gratings. J. Comput. Math. 36(1), 110-127, 2018.

  14. R. Zhang and J. Sun. The reconstruction of obstacles in a waveguide using finite elements. J. Comput. Math. 36(1), 29-46, 2018.

  15. M. Li and R. Zhang. Near-field imaging of sound-soft obstacles in periodic waveguides. Inverse Probl. Imaging 11(6), 1091-1105, 2017.

  16. A. Lechleiter and R. Zhang. A Floquet-Bloch transform based numerical method for scattering from locally perturbed periodic surfaces. SIAM J. Sci. Comput. 39(5), B819-B839, 2017.

  17. A. Lechleiter and R. Zhang. A convergent numerical scheme for scattering of aperiodic waves from periodic surfaces based on the Floquet-Bloch transform. SIAM J. Numer. Anal. 55(2), 713-736, 2017.

  18. R. Zhang, J. Sun, C. Zheng. Reconstruction of a penetrable obstacle in periodic waveguides. Comput. Math. Appl. 74(11), 2739-2751, 2017.

  19. A. Lechleiter and R. Zhang. Non-periodic acoustic and electromagnetic, scattering from periodic structures in 3D. Comput. Math. Appl. 74(11), 2723-2738, 2017.

  20. R. Huang, A. Struthers, J. Sun, R. Zhang. Recursive integral method for transmission eigenvalues. J. Comput. Phys. 327, 830-840, 2017.

  21. G. Sun and R. Zhang. A sampling method for the reconstruction of a periodic interface in a layered medium. Inverse Problems 32(7), 075005, 2016.

  22. J. Li, G. Sun, R. Zhang. The numerical solution of scattering by infinite rough surfaces based on the integral equation method. Comput. Math. Appl. 71(7), 1491-1502, 2016.

  23. J. Yang, B. Zhang, R. Zhang. Near-field imaging of periodic interfaces in multilayered media. Inverse Problems 32(3), 035010, 2016.

  24. R. Zhang and J. Sun. Efficient finite element method for grating profile reconstruction. J. Comput. Phys. 302, 405-419, 2016.

  25. R. Zhang and B. Zhang. Near-field imaging of periodic inhomogeneous media. Inverse Problems 30(4), 045004, 2014.

  26. J. Yang, B. Zhang, R. Zhang. Reconstruction of periodic penetrable grating profiles. Inverse Probl. Imaging 7(4), 1393-1407, 2013.

  27. J. Yang, B. Zhang, R. Zhang. A sampling method for the inverse transmission problem for periodic media. Inverse Problems 28(3), 035004, 2012.

 

 

Preprints

  1. T. Arens and R. Zhang, A nonuniform mesh method for wave scattered by periodic surfaces. 
  2. R. Zhang, Fast convergence for of perfectly matched layers for scattering with periodic surfaces: the exceptional case.
  3. T. Arens, N. Shafieeabyaneh, R. Zhang. A high-order numerical method for solving non-periodic scattering problems in threedimensional bi-periodic structures.