
Plastic materials are ubiquitous in our daily life. 300 million tons of plastic are produced annually worldwide with a rising tendency of 4%. Plastics as well as glue are made from fossil fuels, which leads to increasing CO2 levels in the atmosphere. Additionally, traditional plastics and glue do not degrade in the environment causing massive pollution of our ecosystems.
So-called bioplastics are a promising alternative to substitute conventional plastic materials. However, in 2017 over 50% of the produced bioplastics (1.2 million) were not biodegradable.
The main focus of the group is the investigation of polyhydroxyalkanoate (PHA) biopolymers, which are produced from renewable resources and are fully biodegradable to CO2 and water in natural environments such as soil and sea. PHAs, polyester with comparable properties to conventional plastic materials, are produced by many microorganism for carbon and energy storage.
Biological glue especially mussel glue enables strong bonding even under water. It is non-toxic, non-mutagenic and biocompatible thus it can be degraded by the human body after medical use.
Riedel, S., Donicz, E., Ferré-Aparicio, P., Santolin, L., Marba Ardebol, A., Neubauer, P., & Junne, S. (2023). Workflow for shake flask and plate cultivations with fats for polyhydroxyalkanoate bioproduction. Applied Microbiology and Biotechnology, 1–13. doi.org/10.1007/s00253-023-12599-w
Santolin, L., Thiele, I., Neubauer, P., & Riedel, S. L. Tailoring the HHx monomer content of P (HB-co-HHx) by flexible substrate compositions: scale-up from microwell plates to laboratory bioreactor cultivations. Frontiers in Bioengineering and Biotechnology, 11, 618. https://doi.org/10.3389/fbioe.2023.1081072
Gutschmann, B., Münzberg, M. and Riedel, S.L. (2023), Bioprozessanalytik: Sondieren, wie der Prozess läuft. Nachr. Chem., 71: 30-32. https://doi.org/10.1002/nadc.20234132818
Gutschmann, B., Högl, T.H., Huang, B., Maldonado Simões, M., Junne, S., Neubauer, P. et al. (2023) Polyhydroxyalkanoate production from animal by-products: Development of a pneumatic feeding system for solid fat/protein-emulsions. Microbial Biotechnology, 16, 286– 294. https://doi.org/10.1111/1751-7915.14150
Gutschmann, B., Huang, B., Santolin, L., Thiele, I., Neubauer, P., & Riedel, S. L. (2022). Native feedstock options for the polyhydroxyalkanoate industry in Europe: A review. Microbiological Research, 264, 127177. doi.orghttps://doi.org/10.1016/j.micres.2022.127177
Gutschmann, B., Maldonado Simões, M., Schiewe, T., Schröter, E.S., Münzberg, M., Neubauer, P., Bockisch, A., Riedel, S.L., 2022. Continuous feeding strategy for polyhydroxyalkanoate production from solid waste animal fat at laboratory- and pilot-scale. Microb. Biotechnol. https://doi.org/10.1111/1751-7915.14104
Santolin, L., Waldburger, S., Neubauer, P., Riedel, S.L., 2021. Substrate-Flexible Two-Stage Fed-Batch Cultivations for the Production of the PHA Copolymer P(HB-co-HHx) With Cupriavidus necator Re2058/pCB113. Front. Bioeng. Biotechnol. 9, 217. doi.org/10.3389/fbioe.2021.623890
Saad, V., Gutschmann, B., Grimm, T., Widmer, T., Neubauer, P., Riedel, S.L., 2021. Low-quality animal by-product streams for the production of PHA-biopolymers: fats, fat/protein-emulsions and materials with high ash content as low-cost feedstocks. Biotechnol. Lett. 43, 579–587. doi.org/10.1007/s10529-020-03065-y
Gutschmann, B., Bock, M.C.E., Jahns, S., Neubauer, P., Brigham, C.J., Riedel, S.L., 2021. Untargeted metabolomics analysis of Ralstonia eutropha during plant oil cultivations reveals the presence of a fucose salvage pathway. Sci. Rep. 11, 1–12. https://doi.org/10.1038/s41598-021-93720-9
Riedel, S.L., Brigham, C.J., 2020. Inexpensive and Waste Raw Materials for PHA Production, in: Koller, M. (Ed.), The Handbook of Polyhydroxyalkanoates. CRC Press, Boca Raton, pp. 203–221. doi.org/10.1201/9780429296611-10
Bartels, M., Gutschmann, B., Widmer, T., Grimm, T., Neubauer, P., Riedel, S.L., 2020. Recovery of the PHA Copolymer P(HB-co-HHx) With Non-halogenated Solvents: Influences on Molecular Weight and HHx-Content. Front. Bioeng. Biotechnol. 8, 1–12. https://doi.org/10.3389/fbioe.2020.00944
Riedel, S.L., Brigham, C., 2019. Polymers and adsorbents from agricultural waste, in: Simpson, B.K., Aryee, A.N.A., Toldrá, F. (Eds.), Byproducts from Agriculture and Fisheries: Adding Value for Food, Feed, Pharma and Fuels. Wiley, Chichester, pp. 523–544. doi.org/10.1002/9781119383956.ch22
Gutschmann, B., Schiewe, T., Weiske, M.T.H., Neubauer, P., Hass, R., Riedel, S.L., 2019. In-Line Monitoring of Polyhydroxyalkanoate (PHA) Production during High-Cell-Density Plant Oil Cultivations Using Photon Density Wave Spectroscopy. Bioengineering 6, 85. doi.org/10.3390/bioengineering6030085
Ong, S.Y., Kho, H.P., Riedel, S.L., Kim, S.W., Gan, C.Y., Taylor, T.D., Sudesh, K., 2018. An integrative study on biologically recovered polyhydroxyalkanoates (PHAs) and simultaneous assessment of gut microbiome in yellow mealworm. J. Biotechnol. 265, 31–39. doi.org/10.1016/j.jbiotec.2017.10.017
Brigham, C.J., Riedel, S.L., 2018. The Potential of Polyhydroxyalkanoate Production from Food Wastes. Appl. Food Biotechnol. 6, 7–18. https://doi.org/10.22037/afb.v6i1.22542
Riedel, S.L., Jahns, S., Koenig, S., Bock, M.C.E., Brigham, C.J., Bader, J., Stahl, U., 2015. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. J. Biotechnol. 214, 119–127. https://doi.org/10.1016/j.jbiotec.2015.09.002
Riedel, S.L., Lu, J., Stahl, U., Brigham, C.J., 2014. Lipid and fatty acid metabolism in Ralstonia eutropha: Relevance for the biotechnological production of value-added products. Appl. Microbiol. Biotechnol. 98, 1469–1483. doi.org/10.1007/s00253-013-5430-8
Riedel, S.L., Brigham, C.J., Budde, C.F., Bader, J., Rha, C., Stahl, U., Sinskey, A.J., 2013. Recovery of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from Ralstonia eutropha cultures with non-halogenated solvents. Biotechnol. Bioeng. 110, 461–470. doi.org/10.1002/bit.24713
Riedel, S.L., Bader, J., Brigham, C.J., Budde, C.F., Yusof, Z.A.M., Rha, C., Sinskey, A.J., 2012. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations. Biotechnol. Bioeng. 109, 74–83. doi.org/10.1002/bit.23283
Budde, C.F., Riedel, S.L., Hübner, F., Risch, S., Popović, M.K., Rha, C., Sinskey, A.J., 2011a. Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium. Appl. Microbiol. Biotechnol. 89, 1611–1619. doi.org/10.1007/s00253-011-3102-0
Budde, C.F., Riedel, S.L., Willis, L.B., Rha, C., Sinskey, A.J., 2011b. Production of Poly(3-Hydroxybutyrate- co -3-Hydroxyhexanoate) from Plant Oil by Engineered Ralstonia eutropha Strains. Appl. Environ. Microbiol. 77, 2847–2854. doi.org/10.1128/AEM.02429-10
M. Sc. Saskia Waldburger
contact: waldburger@tu-berlin.de
Prof. Dr.-Ing. Sebastian L. Riedel (riedel@tu-berlin.de)