Effiziente Algorithmen

Wichtige Informationen

Ab dem Wintersemester 2022/23 bietet das Fachgebiet Effiziente Algorithmen aufgrund des Weggangs von Prof. Brill keine Vorlesungen mehr an. Auch können Abschlussarbeiten nur noch in Ausnahmefällen und nach persönlicher Absprache betreut werden. Die Seminare des Fachgebites werden weiterhin (noch bis zum Sommersemester 2023) angeboten. 

Lehre im Sommersemester 2023

Theoretical Foundations of Digital Democracy

Seminar (2 SWS -- 3 ECTS)

Lehre im Wintersemester 2022/23

Advanced Topics in Economics and Computation

Seminar (2 SWS -- 3 ECTS)

In this seminar, we want to explore advanced topics in computational social choiceComputational Social Choice addresses problems at the interface of social choice theory with computer science. Social choice theory is the study of processes for collective decision making, such as voting rules or fair division. 

Topics are allocated before or at the kick-off meeting. Each participant prepares a preparation sheet (4-6 pages with exercises), gives a talk (30-45 min), and reads/solves the preparation sheets of all fellow students. 

Relevant Literature:  

Recommended background: Successful completion of the course Computational Social Choice or similar background.

Lehre im Sommersemester 2022

Computational Social Choice

Lecture & Tutorials (6 SWS -- 9 ECTS)

Computational Social Choice (COMSOC) addresses problems at the interface of social choice theory and computer science. Social choice theory is the formal study of collective decision making processes, an important example of which are voting rules. 

We discuss fundamental concepts from social choice theory and investigate axiomatic and computational aspects.

Specific topics include:

  • Arrow's impossibility result,
  • restricted domains of preferences,
  • social preference functions,
  • tournament solutions,
  • strategic voting, and
  • multiwinner elections.

Recommended background: Basic knowledge about discrete mathematics, algorithms, and computational complexity. Familiarity with formal proof methods.